|ψ⟩ = α|0⟩ + β|1⟩U(θ, φ, λ) = RZ(φ) RX(-π/2) RZ(θ) RX(π/2) RZ(λ)H = -∑ J_{ij} σ_i^z σ_j^z - h ∑ σ_i^xCNOT |ab⟩ = |a, a ⊕ b⟩⟨ψ|ψ⟩ = |α|² + |β|² = 1S(ρ) = -Tr(ρ log ρ)QFT |x⟩ = 1/√N ∑ e^{2πixk/N} |k⟩⟨φ|ψ⟩ = Σ φᵢ* ψᵢρ = |ψ⟩⟨ψ|P(|1⟩) = |β|²Grover: O(√N)E(|ψ⟩) = ⟨ψ|H|ψ⟩
|ψ⟩ = α|0⟩ + β|1⟩U(θ, φ, λ) = RZ(φ) RX(-π/2) RZ(θ) RX(π/2) RZ(λ)H = -∑ J_{ij} σ_i^z σ_j^z - h ∑ σ_i^xCNOT |ab⟩ = |a, a ⊕ b⟩⟨ψ|ψ⟩ = |α|² + |β|² = 1S(ρ) = -Tr(ρ log ρ)QFT |x⟩ = 1/√N ∑ e^{2πixk/N} |k⟩⟨φ|ψ⟩ = Σ φᵢ* ψᵢρ = |ψ⟩⟨ψ|P(|1⟩) = |β|²Grover: O(√N)E(|ψ⟩) = ⟨ψ|H|ψ⟩
    QQ
    Quddle Quantum
    🧮Algorithms🧫Quantum Data🌌Spaces🔥Trending🧪QSim📚Learning
    NewSign In

    Trending in Quantum

    Discover the most popular algorithms, breakthrough research, and active communities in quantum computing

    #1
    algorithm
    Trending

    First post - Introducing myself

    I am a quantum enthusiast. Looking to learn and collaborate.

    a

    anotherpj

    @anotherpj

    2
    1
    0
    1.0439999999999998
    score
    #2
    algorithm
    Trending

    Classical Shadows for Observable Estimation

    Demonstration of the Classical Shadows protocol for estimating multiple observables efficiently from few measurements.

    R

    Rishwi Thimmaraju

    @thimmaraju

    1
    0
    0
    0.384
    score
    #3
    algorithm
    Trending

    Adaptive VQE with Quantum Natural Gradient

    Implementation of an Adaptive VQE (ADAPT-VQE) framework using the Quantum Natural Gradient (QNG) optimizer for improved convergence on molecular Hamiltonians.

    View on GitHub
    R

    Rishwi Thimmaraju

    @thimmaraju

    1
    0
    0
    0.384
    score