|ψ⟩ = α|0⟩ + β|1⟩U(θ, φ, λ) = RZ(φ) RX(-π/2) RZ(θ) RX(π/2) RZ(λ)H = -∑ J_{ij} σ_i^z σ_j^z - h ∑ σ_i^xCNOT |ab⟩ = |a, a ⊕ b⟩⟨ψ|ψ⟩ = |α|² + |β|² = 1S(ρ) = -Tr(ρ log ρ)QFT |x⟩ = 1/√N ∑ e^{2πixk/N} |k⟩⟨φ|ψ⟩ = Σ φᵢ* ψᵢρ = |ψ⟩⟨ψ|P(|1⟩) = |β|²Grover: O(√N)E(|ψ⟩) = ⟨ψ|H|ψ⟩
|ψ⟩ = α|0⟩ + β|1⟩U(θ, φ, λ) = RZ(φ) RX(-π/2) RZ(θ) RX(π/2) RZ(λ)H = -∑ J_{ij} σ_i^z σ_j^z - h ∑ σ_i^xCNOT |ab⟩ = |a, a ⊕ b⟩⟨ψ|ψ⟩ = |α|² + |β|² = 1S(ρ) = -Tr(ρ log ρ)QFT |x⟩ = 1/√N ∑ e^{2πixk/N} |k⟩⟨φ|ψ⟩ = Σ φᵢ* ψᵢρ = |ψ⟩⟨ψ|P(|1⟩) = |β|²Grover: O(√N)E(|ψ⟩) = ⟨ψ|H|ψ⟩
    QQ
    Quddle Quantum
    🧮Algorithms🧫Quantum Data🌌Spaces🔥Trending🧪QSim📚Learning
    NewSign In
    Back to Learning•Application module

    Quantum Finance

    Monte Carlo acceleration and portfolio optimisation.

    Module outline
    Select any section to jump directly to it. Completion saves locally.
    Want to improve this module?

    Learning notes are stored directly in Supabase as Markdown. Update them via the scripts/generate_learning_content.mjs pipeline or edit the learning_subsections.content_md field manually.

    Add supplementary material by appending items to learning_subsections.resources (title + URL). The references block updates automatically.

    Probability distribution encodings
    Amplitude estimation and oracle design for finance problems.