|ψ⟩ = α|0⟩ + β|1⟩
U(θ, φ, λ) = RZ(φ) RX(-π/2) RZ(θ) RX(π/2) RZ(λ)
H = -∑ J_{ij} σ_i^z σ_j^z - h ∑ σ_i^x
CNOT |ab⟩ = |a, a ⊕ b⟩
⟨ψ|ψ⟩ = |α|² + |β|² = 1
S(ρ) = -Tr(ρ log ρ)
QFT |x⟩ = 1/√N ∑ e^{2πixk/N} |k⟩
⟨φ|ψ⟩ = Σ φᵢ* ψᵢ
ρ = |ψ⟩⟨ψ|
P(|1⟩) = |β|²
Grover: O(√N)
E(|ψ⟩) = ⟨ψ|H|ψ⟩
|ψ⟩ = α|0⟩ + β|1⟩
U(θ, φ, λ) = RZ(φ) RX(-π/2) RZ(θ) RX(π/2) RZ(λ)
H = -∑ J_{ij} σ_i^z σ_j^z - h ∑ σ_i^x
CNOT |ab⟩ = |a, a ⊕ b⟩
⟨ψ|ψ⟩ = |α|² + |β|² = 1
S(ρ) = -Tr(ρ log ρ)
QFT |x⟩ = 1/√N ∑ e^{2πixk/N} |k⟩
⟨φ|ψ⟩ = Σ φᵢ* ψᵢ
ρ = |ψ⟩⟨ψ|
P(|1⟩) = |β|²
Grover: O(√N)
E(|ψ⟩) = ⟨ψ|H|ψ⟩
Q
Q
Quddle Quantum
🧮
Algorithms
🧫
Quantum Data
🌌
Spaces
🔥
Trending
🧪
QSim
📚
Learning
New
Sign In
Toggle theme
Back to Learning
•
Core module
Quantum Algorithms
From textbook speedups to variational and fault-tolerant protocols.
Deutsch-Jozsa & Bernstein-Vazirani
Early algorithms demonstrating exponential and quadratic advantages.