|ψ⟩ = α|0⟩ + β|1⟩U(θ, φ, λ) = RZ(φ) RX(-π/2) RZ(θ) RX(π/2) RZ(λ)H = -∑ J_{ij} σ_i^z σ_j^z - h ∑ σ_i^xCNOT |ab⟩ = |a, a ⊕ b⟩⟨ψ|ψ⟩ = |α|² + |β|² = 1S(ρ) = -Tr(ρ log ρ)QFT |x⟩ = 1/√N ∑ e^{2πixk/N} |k⟩⟨φ|ψ⟩ = Σ φᵢ* ψᵢρ = |ψ⟩⟨ψ|P(|1⟩) = |β|²Grover: O(√N)E(|ψ⟩) = ⟨ψ|H|ψ⟩
|ψ⟩ = α|0⟩ + β|1⟩U(θ, φ, λ) = RZ(φ) RX(-π/2) RZ(θ) RX(π/2) RZ(λ)H = -∑ J_{ij} σ_i^z σ_j^z - h ∑ σ_i^xCNOT |ab⟩ = |a, a ⊕ b⟩⟨ψ|ψ⟩ = |α|² + |β|² = 1S(ρ) = -Tr(ρ log ρ)QFT |x⟩ = 1/√N ∑ e^{2πixk/N} |k⟩⟨φ|ψ⟩ = Σ φᵢ* ψᵢρ = |ψ⟩⟨ψ|P(|1⟩) = |β|²Grover: O(√N)E(|ψ⟩) = ⟨ψ|H|ψ⟩
    QQ
    Quddle Quantum
    🧮Algorithms🧫Quantum Data🌌Spaces🔥Trending🧪QSim📚Learning
    NewSign In
    Back to Learning•Core module

    Quantum Algorithms

    From textbook speedups to variational and fault-tolerant protocols.

    Module outline
    Select any section to jump directly to it. Completion saves locally.
    Want to improve this module?

    Learning notes are stored directly in Supabase as Markdown. Update them via the scripts/generate_learning_content.mjs pipeline or edit the learning_subsections.content_md field manually.

    Add supplementary material by appending items to learning_subsections.resources (title + URL). The references block updates automatically.

    Deutsch-Jozsa & Bernstein-Vazirani
    Early algorithms demonstrating exponential and quadratic advantages.